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ABSTRACT
As clock frequencies increase, topology-matching bus routing is desired to

provide an initial routing result which facilitates the following buffer inser-

tion to meet the timing constraints. Our algorithm consists of three main

techniques: (1) a bus clustering method to reduce the routing complexity,

(2) a DAG-based algorithm to connect a bus in the specific topology, and

(3) a rip-up and re-route scheme to alleviate the routing congestion. Ex-

perimental results show that our proposed algorithm outperforms all the

participating teams of the 2018 CAD Contest at ICCAD, where the top-3

routers result in 145%, 158%, and 420% higher costs than ours.

CCS CONCEPTS
• Hardware→ Electronic design automation;

KEYWORDS
Physical Design, Bus Routing, Topology Matching, Advance Technologies

1 INTRODUCTION
As the semiconductor industry evolves into the nanometer era, the scale

of modern electronic systems grows rapidly. The number of signal nets

in a circuit also increases significantly, making manual routing an ex-

tremely complicated task. In modern VLSI designs, buses are widely used

to transfer parallel information between functional units. The increasing

clock frequency also induces special design constraints for bus routing

(e.g., the length-matching constraint [9, 12, 14] and the exact-matching
constraint [10, 11]). Traditional bus routers often cannot handle these con-

straints well. Therefore, it is desirable to develop an effective algorithm

for bus routing with modern design constraints.

Timing skew is a common routing constraint in analog/mixed-signal

circuit and printed circuit board (PCB) bus designs, where data transferred

in all bits of a bus should arrive at the destination pins almost simulta-

neously. To meet the timing-skew constraint, the length of all the wires

of the same bus should be approximately the same. As a result, existing

frameworks considering the length-matching constraint (i.e., the length

differences of all bits of the same bus are within specific bounds) have

been proposed. Ozdal et al. [13] proposed a length-matching algorithm

for high-performance PCBs, ensuring that both maximum and minimum

length constraints are satisfied. Yan et al. [15] presented a length-matching

gridless router for general routing topology, so as to deal with practical

designs without topology restriction efficiently.

As advanced node enablement such as N7 and N5 being deployed in

modern semiconductor process technology, the traditional uniform rout-

ing track configuration is not sufficient for modern circuit designs. As

a result, the non-uniform track configuration with an irregular track ar-

rangement and different width constraints is utilized. In addition, more

complicated design rules (e.g., min-area rules, corner-to-corner spacing

rules, etc.) become necessary. Due to the new challenges of bus routing,
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previous length-matching frameworks might not be sufficient for meet-

ing real-world IC design requirements and generating routing results

without design rule violations. So bus routing algorithms considering

the topology-matching constraint are preferred as they provide higher

flexibility in timing optimization. If all the bits of a bus are routed in an

isomorphic topology and thus topology-matching routing, it is often easier

for the following timing-aware refinement stages (e.g., buffer insertion)

to meet the timing requirements. Figure 1 shows the bus routing results

considering the length-matching and topology-matching constraints.
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Figure 1: (a) A bus routing that meets the length-matching constraint. (b)
A bus routing that satisfies the topology-matching constraint. pi, j denotes
the j th pin of the i th bit in a bus, and oi denotes the i th obstacle in the design.

However, not much work addressed the topology-matching bus routing

problem [8]. To the best of our knowledge, further, no published work

presents a completed topology-matching bus routing flow with real-world

requirements such as the non-uniform track configuration. To stimulate

the research on this topic, the 2018 CAD Contest at ICCAD [2] held the

first contest on a topology-matching bus routing problem.

Based on the Contest, we present a robust topology-matching bus

router for advanced VLSI technologies. Our proposed algorithm solves

the designated topology-matching bus routing problem while considering

some modern design constraints. The main contributions of this paper

are summarized as follows:

• We propose an efficient bus clustering algorithm to group the buses

with the same pin topology, which can substantially reduce the bus

routing complexity.

• We develop a novel DAG-based topology-matching on-track bus

routing algorithm that connects all the bits of a bus in a specific

topology while handling the spacing rules and non-uniform track

configuration.

• We design a rip-up and re-routing scheme that alleviates routing

congestion, which significantly reduces the number of spacing

violations.

• Experimental results show that our router achieves much better

routing quality than any other participating router at the 2018 CAD

Contest at ICCAD. For example, the top-3 routers of the contest

result in 145%, 158%, and 420% higher costs than ours.

The remainder of this paper is organized as follows. Section 2 intro-

duces basic elements of buses and the design constraints used in the con-

test [2] and formulates the obstacle-aware on-track topology-matching

bus routing problem. Section 3 details the core techniques of our algorithm.

Section 4 shows the experimental results, and Section 5 concludes this

paper.
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2 PRELIMINARIES
In this section, we introduce some bus basics, the non-uniform track

configuration, the topology-matching constraints and the definition of

compactness of a bus. Then, we formulate the obstacle-aware topology-

matching on-track bus routing problem.

2.1 Bus Basics
Here, we give the terminology of a bus used in this paper, including pin
group, bit, segment, and wire width.

2.1.1 Pin Group. A pin group is a group of aligned pins in a bus, where the
x- or y-coordinates of the center points of pins are identical. A pin group

is vertical (horizontal) if the aligned pins have the same x-coordinates (y-
coordinates). Besides, the pin group position is defined as the x-coordinate
(y-coordinate) of its pin for a vertical (horizontal) pin group. Moreover,

the order of the pins within a pin group is the same or reverse bit order

from LSB to MSB. Finally, the number of pins in each pin group in a bus

is exactly the same.

2.1.2 Bit. For each pin in a pin group, there exists a corresponding pin

in every other pin group of the bus, which should be connected together.

The set of these relevant pins is defined as a bit. Hence, the number of

bits exactly matches the number of pins in a pin group. Once all the bits

in a bus are connected, the bus is considered as connected.

2.1.3 Segment. A segment is a set of matched wires of each bit in a

topology-matching routing result. Thus, the number of wires in a segment

is equal to the number of bits.

2.1.4 Wire Width. For a bus, the wire widths of different layers may be

different. Typically, the wire width in a higher layer is larger.

Figure 1(b) illustrates a bus with two pin groups, three bits, and four

segments. Note that the bus in Figure 1(b) satisfies the topology-matching

constraint, to be detailed in Section 2.3.

2.2 Non-Uniform Track Configuration
Routing tracks are important for helping a router to handle design rules

and mask coloring for multiple patterning [4]. To meet the complex rout-

ing requirements for different buses, a simple uniform track configuration

might not be sufficient. So the non-uniform track configuration is adopted,

which is composed of tracks with different width constraints. It is prohib-

ited to route a wire on a track if the wire width is greater than the width

constraint of the track. The spacing between two tracks are non-uniform

as well. Figure 2 shows an example of the non-uniform track configuration.

Besides, there are even overlapping tracks with different wire constraints

in the design. In this case, only the wires with widths less than or equal

to the maximum width constraints in the overlap region are allowed to be

routed. For example, t3,1 and t3,2 are overlapped as shown in Figure 2. Any
wire routed through the overlap region should have a width satisfying

the width constraint of t3,1 because it has a larger width constraint.

Width constraint
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Figure 2:Anexample of the non-uniform track configuration. ti, j denotes
the j th track in the metal layer i .

2.3 Topology-Matching Constraints
To meet the topology-matching constraint, the following five constraints

should be satisfied:

• Wire Count Constraint: the number of wires of a bit should be the

same.

• Ordering Constraint: within each segment, the wires of different

bits should follow the same or reverse bit order (i.e., LSB to MSB or

MSB to LSB).

• Layer Constraint: within each segment, the wires of a bit should be

in the same layer.

• Direction Constraint: within each segment, the wires of a bit should

route towards the same direction.

• T-junction Constraint: T-junctions should intersect at the same

segment.

Figure 3 shows an example of the routing constraints. The bus consists

of three 2-pin bits b1, b2, and b3, where the pin set of b1, b2, and b3 is

{p1,1,p1,2}, {p2,1,p2,2} and {p3,1,p3,2}, respectively. In Figure 3(a), all

bits are considered to have the same topology. In Figure 3(b), the bit b3
has six wires, while other bits have only four wires, which violates the

wire count constraint. In Figure 3(c), if we trace from the upper-left pin

group, the wires within the second segment are in the wrong ordering

(i.e., neither in the same nor reverse bit order), which violates the ordering

constraint. The bus in Figure 3(d) violates the direction constraint because

the second wire of b3 routes upwards while the second segment of other

bits routes downwards. Finally, a T-junction might occur when a bit has

more than two pins. As shown in Figure 3(e), within a segment, if a bit

is a T-junction, the other bits should also be T-junctions to satisfy the

T-junction constraint.

2.4 Bus Compactness
To maintain the similarity among the bits within a bus, the bus should

keep as compact as possible. The compactness of a bus is defined as the

summation of the distance between the LSB and MSB of all segments. In

Figure 4, the bus in Figure 4(a) is more compact than that in Figure 4(b)

because

∑
4

i=1wi <
∑
4

i=1w
′
i . Despite that the total wirelengths of the bus

in Figure 4(a) and Figure 4(b) are the same, the bus in Figure 4(a) is more

preferable because it is more compact.

2.5 Problem Formulation
We formally define the obstacle-aware topology-matching on-track bus

routing problem below:

Problem 1 (Obstacle-Aware Topology-Matching On-Track Bus

Routing Problem). Given a set of n buses SB = {B1, . . . ,Bi ,. . . ,Bn }, and
a set ofm obstacles So = {o1, . . . ,oj , . . . ,om }, generate a routing solution
for each bus Bi ∈ SB , such that Bi is on-track and meets the topology-
matching constraint, and the following metrics are optimized/minimized: (1)
the total wirelength of all buses, (2) the segment count of each bus, (3) the
compactness of each bus, and (4) the number of total spacing violations.

3 PROPOSED ALGORITHMS
The obstacle-aware topology-matching on-track bus routing problem

is complex due to the topology-matching constraint for each bus, the

congestion problem among the buses, and also the design rules. Therefore,

we propose a novel algorithm to handle the bus topology and alleviate the

routing congestion as well. Our proposed algorithm consists of two major

steps: (1) a bus clustering technique based on the well-known longest

common subsequence (LCS) algorithm [5], which merges buses with two

pin groups together to reduce the routing complexity and (2) a topology-

matching bus routing algorithm that iteratively connects all buses while

considering the important metrics mentioned in Section 2. Figure 5 shows

the overall flow of the proposed algorithm. The following subsections

detail the two stages.

3.1 LCS Bus Clustering
Most buses in modern VLSI designs are buses with two pin groups, and

furthermore they usually have similar pin topologies. The bus clustering
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Figure 3: Examples of the five topology constraints. (a) A bus routing meeting all the topology constraints. (b) The third bit violates the wire count
constraint. (c) The second segment violates the ordering constraint. (d) The second segment violates the direction constraint. (e) A routing with T-
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Figure 5: Overview of our algorithm.

technique can be applied to facilitate the routing process. Notably, our

bus clustering technique only considers buses with two pin groups.

Definition 1. A super-bus is composed of two or more buses, where the
original buses should meet the following constraints:

(1) For each layer, the wire widths for the original buses should be the
same.

(2) The pin group positions in a bus can respectively match those of the
other buses so that the number of pin groups remains unchanged after
clustering.

(3) The pin orders of the two pin groups should be consistent after clus-
tering in order to meet the topology-matching constraint.

First, we collect the buses into a clustering candidate list (CCL) if their

wire widths for each layer and pin group positions are exactly the same

(i.e., Constraint (1) and Constraint (2)). Second, to maximize the number

of clustered buses in a CCL, the well-known LCS algorithm is performed

to find the longest common subsequence in terms of the bits for each

CCL. Then, we cluster the buses whose bits are all in the LCS. Besides, the

LCS algorithm is performed twice on the two pin sequences in different

directions, and the longer subsequence will be selected for clustering. The

buses in the LCS must satisfy Constraint (3) since the two pin groups

of the resulting super-bus follow the same bit ordering (i.e., LCS). The

clustered buses will be removed from the CCL, and the LCS clustering

will be performed on the updated list. This iterative process terminates if

no more buses can be clustered.

Figure 6 illustrates an example of the bus clustering technique. The

CCL contains Ba , Bb , and Bc , and the LCS shown in Figure 6(a) is pa
1,∗,

pa
2,∗, p

a
3,∗, p

b
2,∗, p

c
1,∗, p

c
2,∗. The notation p

k
i,∗ denotes the pins of the i

th
bit

in the bus Bk ; for example, in Figure 6(a), pa
1,∗ contains p

a
1,1 and p

a
1,2 in

the bus Ba . Since all the bits of Ba and Bc in the LCS, Ba and Bc are thus

clustered into the super-bus Bd as shown in Figure 6(b).
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Figure 6: (a) An example shows the buses Ba , Bb , and Bc , and the relative
positions of their pins. (b) The super-bus Bd is generated bymerging buses
Ba and Bc . Here, pki, j denotes the j

th pin of the i th bit in the bus Bk .

3.2 Iterative Bus Routing
After the bus clustering, the iterative bus routing is performed to connect

all the buses. To alleviate the routing congestion in a design, we adopt the

negotiation-based rip-up and re-route technique [7] in our bus routing

framework. To maintain the routing ordering, all unrouted buses (includ-

ing super-buses) are pushed into a maximum-priority queue. The cost

function used by the priority queue is

CB = αд · nд + αb · nb + αf · nf , (1)



where CB is the total cost of a bus B, nд is the number of pin groups in

B, nb is the number of bits in B, nf is the number of continuous failures

in the rip-up phase, and αд , αb , and αf are weighted constants. In our

implementation, αд , αb , and αf are set to 32, 1, and 8, respectively. Since

high-degree buses (i.e., buses with more pin groups) usually need more

routing resource and it is much harder to successfully route high-degree

buses, we set αд to a higher value. For buses with many bits, it is also

difficult to complete the routing without design rule violations. Therefore,

by considering nb in the cost function, buses with more bits have higher

priorities; this way can increase the routing success rate. Moreover, nf is

added to the cost function. If a bus fails for many times, then its priority

should increase since the bus might be easily blocked by other previously

routed buses.

Once the priority queue is initialized, we can start with the negotiation-

based routing scheme, which consists of the four main steps: (1) single

bus connection, (2) history map update, (3) blocking bus removal, and (4)

super-bus declustering. We detail these four steps below.

Algorithm 1 RouteSingleBus(D, B)

Input: D : the input design, B: the target bus.
Output: RB : the routing result of the bus B .
1: Sb := RandomChooseBits(B, k ); // the set of k randomly chosen bits from B
2: Sд := ∅; // the set of routing guides of the k bits in Sb
3: for each bit b ∈ Sb
4: дb := PathSearch(b, D);

5: Sд := Sд ∪ {дb };
6: PQд := TopologyAnalysis(Sд );
7: while PQд is not empty

8: extract the top guide дgolden from PQд ;
9: nf := 0;

10: while nf < nmax
11: Decision(дgolden);
12: for each bit b ∈ B
13: G := ConstructDAG(b, дgolden, D);

14: if no path from s to t in G
15: nf := nf + 1;
16: RB := ∅;

17: break ;

18: else
19: rb := ShortestPath(G);

20: RB := RB ∪ {rb };
21: if B is successfully connected

22: return RB ;
23: return ∅;

3.2.1 Single Bus Connection. Algorithm 1 shows our topology-matching

routing algorithm for a single bus. First, we randomly choose k bits from

the target bus B to the set Sb . Then, the A* path searching algorithm is

applied to each bit in Sb to generate the routing guides, and the guides are

stored in Sд . If k is large, the potential routing results of B presented by the

routing guides may be more accurate. However, the runtime of generating

routing guides will also increase. To balance the solution quality of routing

guides and runtime, we set the value of k by the following equation,

k = min

(
nBbit ,max

(
10,min(50,

nBbit
4

)
) )
, (2)

where nBbit is the number of bits in bus B. Figure 7 shows an example of

generating the routing guides of a three-bit bus.

After generating the routing guides of the selected bits, the topology

analysis is performed to collect the guides with the same topology into

a topology candidate list (TCL). For each TCL, we choose a guide to be

the representative guide for the list. Then all representative guides are

pushed into the max-priority queue PQд , where the cost used in PQд is the

number of guides in the corresponding list. In Figure 7, since the topology

of д1 and д2 are identical, they are pushed into a TCL. No guides share

the same topology with д3, and thus д3 forms a TCL itself.

The larger size of a TCL means that the topology of its representative

guide is more popular among the selected bits in Sb . Therefore, we extract
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Figure 7: (a) An unrouted bus. (b) The routing guides generated by apply-
ing the A* path search algorithm to each bit. дi represents the guide of the
i th bit.

the top guide from PQд as the golden guide дgolden and try to connect all

the bits by following the topology of дgolden. For each segment of a guide,

there are two bit directions. For a horizontal (vertical) segment, the bit

direction can be LSB to MSB (denoted as dL→M ) or MSB to LSB (denoted

as dM→L) in increasing y-coordinate (x-coordinate) order. So we make

decisions on the bit direction of each segment in дgolden before connecting
the bits.

After deciding the bit direction of each guide segment, we route all bits

sequentially from LSB to MSB. To connect a bit in the specific topology, a

routing directed acyclic graph (DAG) G(V ,E) is constructed with several

properties. If there exists a path from source s to target t , then the shortest

path from s to t is the most compact route for the bit without any spacing

violations. Otherwise, if no path exists from s to t , it is impossible to route

the bit in the golden topology under the specified searching region. The

routing DAG construction consists of three steps: (1) deciding searching

region, (2) constructing on-track vertices, and (3) constructing edges with

compactness costs.
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Figure 8: The construction of usable track lists (UTLs).

The size of the searching region impacts the runtime and routing quality.

For each segment, we maintain a usable track list (UTL). The formations

of UTLs for routing the first bit and non-first bits are different. For the

first bit, the nfirst nearest tracks of the segment si for the both sides are
pushed into the track position list UTLi . On the other hand, for the other

bits, since the previous bit must be connected and the bit direction of each

segment needs to be followed, the nnon-first nearest tracks of each wire of

the previous bit for one side are pushed into the UTL. To achieve a better

trade-off between the runtime and routing quality, nfirst and nnon-first are
defined as follows:

nfirst = min(100, 6nBbit ), (3)

nnon-first = min(100, 2nBbit ), (4)

where nBbit is the number of bits in bus B. In Figure 8, suppose we are

connecting the first bit and nfirst is 2, UTL2 is ⟨t2,1, t2,2, t2,3⟩ and UTL3



is ⟨t1,1, t1,2⟩. Moreover, the segment which connects a pin directly or

through a via is called a critical segment. For a critical segment, only the

tracks which overlap with the pin are collected into the UTL. For instance,

in Figure 8, s1 and s4 are critical segments so UTL1 and UTL4 are ⟨t1,4⟩
and ⟨t2,4⟩, respectively.
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Figure 9: An example of vertex construction. Letvki, j denote the vertex in
boxk , which is the intersection points of the i th track in UTLk−1 and the j th
track in UTLk .

For two adjacent segments, say si and si+1, the intersection points of

the perpendicular tracks in UTLi and UTLi+1 form a box. For a critical
segment, say sj , the intersection points of the tracks in UTLj and the pin

boundary also form a box. All box points are vertices in G. For example,

there are five boxes in Figure 9. The usable tracks of the critical segment

s1 and the pin p3,2 form box1, which consists of v1,1. The available tracks
of s1 and s2 form box2, which contains three vertices v2

1,1, v
2

1,2, and v
2

1,3.

If we connect a bit by following the box sequence, the topology of the

bit will be the same as the golden one. Therefore, we construct directed

edges from the points in boxi to the points in boxi+1 if the corresponding
wires are valid. A wire is valid if it is on-track without spacing violations.

In order to make the bus compact, we use the costs of edges to encourage

wires to get close to the routed wires of the previous bit. The track position
of a horizontal (vertical) track is defined as they-coordinate (x-coordinate)
of the track. To determine edge costs, each UTL is sorted by the track

positions in increasing (decreasing) order if the bit direction of the corre-

sponding segment is dL→M (dM→L). Then the usable tracks in each UTL

are indexed from 1 according to the sorted order. In Figure 9, suppose that

the bit directions of all segments are dL→M . For s2, the usable tracks t2,1,
t2,2, and t2,2 are indexed 1, 2, and 3, respectively. Similarly, for s3, t1,1 and
t1,2 are indexed 1 and 2, respectively. The cost of an edge is defined by

the following equation,

cost

(
e(vk−1i1, j1 ,v

k
i2, j2 )

)
= i2 · j2, (5)

where e(v1,v2) is a directed edge fromv1 tov2.v
k
i, j is a vertex in boxk and

represents the intersection point of the ith track inUTLk−1 and the jth track
in UTLk . In Figure 9, the cost of e(v2

1,2,v
3

2,2) is 4. The edge e(v
2

1,3,v
3

3,2)

is not constructed in G due to a spacing violation with the obstacle o1.
Finally, the source node s and the target node t are added to G . The edges
from s to all the vertices in the first box are constructed with zero cost,

and also the edges from all the vertices in the last box are built with zero

cost. Figure 10 shows the routing DAG of the instance in Figure 9.

After the construction of the routing DAG, we apply the well-known

Dijkstra shortest path algorithm [6] to find the path with the least cost. If a

path is found, then the bit is connected in the golden topology. In Figure 10,

the shortest path is ⟨s,v1
1,1,v

2

1,1,v
3

1,1, v
4

1,1,v
5

1,1, t⟩, and the routing result

of the first bit is shown in Figure 11(a). Figure 11 illustrates the routing

results if we can connect all the bits successfully. However, if we fail to

connect a bit, then all the wires of previous bits are ripped-up. The bit

directions are re-decided before re-routing all the bits. When the number

of failures reaches the user-defined number nmax , it is considered that the
bus cannot be connected in the golden topology. Then the top guide of
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Figure 10: The constructed routing DAG of Figure 9 and the cost of each
edge is labelled aside. The solid arrows represent the shortest path from s
to t .

PQд is extracted to be the next golden guide. As the PQд is empty, the bus

fails to be connected by following any candidate topology.

3.2.2 History Map Update. Bus connection failures may result from the

blocking buses which block the current bus. In the construction of the

routing DAG, the blocking buses can be obtained while building the

directed edges. To avoid the same routing result, we increase the costs of

the blocking buses in the history map after the single bus connection fails.

Therefore, in the next iteration, when building the guides of a bus, the

router will detour to avoid the congested region due to its higher cost.

3.2.3 Blocking Bus Removal. The blocking buses are ripped-up after the

history map is updated. Since the number of blocking buses may be large

for some congested cases, the maximum number of ripped-up buses is

limited to a user-defined number. In our implementation, at most three

buses will be removed in an iteration.

3.2.4 Super-Bus Declustering. The track configuration may result in the

routing failure of a super-bus. Thus, after the connection of a super-bus

fails a user-defined number of times, the super-bus is split into two buses

as evenly as possible.

4 EXPERIMENTAL RESULTS
We implemented our algorithm in the C++ programming language with

the Boost C++ libraries 1.67.0 [3] and the Lemon graph library [1]. All

experiments were performed on a Linux workstation with 4 Xeon 3.5

GHz CPUs with 72GB memory. The experiments were conducted on the

benchmarks from the 2018 CAD Contest at ICCAD, where the benchmark

statistics is summarized in Table 1.

Table 1: Benchmark characteristics. #buses, #bits, #pins, #obs, and #layers
denote the numbers of buses, total bits, obstacles, and layers, respectively.

Circuit #buses #bits #pins #obs #layers

beta_1 34 1260 2520 159 3

beta_2 26 1262 2524 0 3

beta_3 60 665 1330 555108 3

beta_4 62 698 1396 0 3

beta_5 6 1964 3928 0 4

final_1 18 1032 2064 0 3

final_2 70 1285 2570 0 3

final_3 47 852 1704 0 4

To evaluate the solution quality, the contest [2] provides a cost function

considering the metrics described in Section 2. The total cost (Ctotal ) is
the sum of the routing cost (Cr ), the spacing violation penalty cost (Cs ),
and the routing failure penalty cost (Cf ), where lower values are better.
The routing cost (Cr ) is a weighted sum of the following three costs: the

normalized wirelength cost (Cwi ), the normalized segment count cost

(Csi ), and the normalized bus width cost (Cci ). The spacing violation
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Figure 11: The demonstration of the bus connection bit-by-bit.

Table 2: Comparison of the total routing cost (Cr ), the total spacing cost (Cs ), the number of spacing violations (ns ), the routing failure cost (Cf ), the
number of buses with routing failures (nf ), and the total cost (Ctotal ). The runtime of our algorithm is given in the last column.

1
st
Place 2

nd
Place 3

rd
Place Ours

Circuit Cr Cs ns Cf nf Ctotal Cr Cs ns Cf nf Ctotal Cr Cs ns Cf nf Ctotal Cr Cs ns Cf nf Ctotal Time (s)

beta_1 688.70 280 35 0 0 968.70 700.52 5096 637 0 0 5796.52 641.48 8744 1093 4000 2 13385.48 685.76 0 0 0 0 685.76 3

beta_2 514.65 760 95 0 0 1274.65 563.15 4904 613 0 0 5467.15 484.15 9472 1184 2000 1 11956.15 521.82 0 0 0 0 521.82 156

beta_3 1936.28 0 0 0 0 1936.28 2024.11 0 0 0 0 2024.11 1998.70 1928 241 0 0 3926.70 1929.77 0 0 0 0 1929.77 71

beta_4 2192.41 0 0 0 0 2192.41 2270.69 0 0 0 0 2270.69 2250.14 1048 131 0 0 3298.14 2176.90 0 0 0 0 2176.90 3

beta_5 118.99 1848 231 0 0 1966.99 94.72 616 77 2000 1 2710.72 98.16 1216 152 2000 1 3314.16 120.72 600 75 0 0 720.72 110

final_1 326.57 830 83 2000 1 3156.57 366.67 2750 275 2000 1 5116.67 252.18 0 0 10000 5 10252.18 316.89 260 26 2000 1 2576.89 4813

final_2 1824.10 4500 450 8000 4 14324.10 1890.09 2990 299 8000 4 12880.09 1976.16 6910 691 0 0 8886.16 1990.99 2320 232 0 0 4310.99 940

final_3 2966.30 490 49 10000 5 13456.30 2678.29 300 30 2000 1 4978.29 4238.39 20 2 24000 12 28258.39 3090.51 0 0 0 0 3090.51 22

Ratio 2.45 2.58 5.20 1.00

penalty cost (Cs ) and the routing failure penalty cost (Cf ) are proportional
to the number of spacing violations and the number of buses with routing

failures, respectively.

The routing results of the top-3 routers of the contest [2] and ours

are summarized in Table 2. According to the contest evaluation metrics,

the top-3 routers result in 145%, 158%, and 420% higher total costs than

ours. The experimental results show that our router achieves the best

performance onminimizing the total spacing violations, which justifies the

efficiency and effectiveness of our proposed rip-up and re-route scheme

for handling the routing congestion. Note that the benchmarks provided by
the contest organizers are not guaranteed to have solutions without spacing
violations. Moreover, the top-3 routers fail to route some buses while our

router only has one routing failure on the benchmark final_1. Since
final_1 is a more congested case, the rip-up and re-route stage, which

attempts to obtain a violation-free solution, iterates many more times,

thus incurring a longer runtime.

In practice, the proposed bus clustering method can merge many buses

into super-buses. Therefore, the number of buses is significantly reduced,

which reduces the routing complexity. Table 3 gives the numbers of buses

without and with bus clustering.

Table 3: Comparison of the numbers of buses w/o and w/ bus clustering.

Circuit #buses (w/o) #buses (w/) Ratio (%)

beta_1 34 4 11.8

beta_2 26 6 23.1

beta_3 60 13 21.7

beta_4 62 14 22.6

beta_5 6 5 83.3

final_1 18 4 22.2

final_2 70 24 34.3

final_3 47 15 31.9

5 CONCLUSIONS
In this paper, we have presented an effective and efficient topology-

matching bus routing algorithm considering obstacles and non-uniform

track configurations. We have also proposed a bus clustering method that

groups buses with two pin groups to reduce the routing complexity. A

DAG-based bus routing algorithm has been proposed to efficiently connect

all bits within a bus in the specified topology. The rip-up and re-route

framework can effectively reduce the number of spacing violations. Exper-

imental results have shown that our algorithm significantly outperforms

the top-3 routers in the 2018 CAD Contest at ICCAD. In particular, the

first-place router of the contest results in a 145% higher cost than ours.
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