
Disjoint-Support Decomposition and Extraction for
Interconnect-Driven Threshold Logic Synthesis

Hao Chen, Shao-Chun Hung, and Jie-Hong R. Jiang

Department of Electrical Engineering / Graduate Institute of Electronics Engineering

National Taiwan University, Taipei 10617, Taiwan

ABSTRACT
Threshold logic circuits are artificial neural networks with their neu-

ron outputs being binarized, thus amenable for efficient, multiplier-

free, hardware implementation of machine learning applications. In

the reviving threshold logic synthesis, this work lays the founda-

tions of disjoint-support decomposition and extraction operation

of threshold logic functions. They lead to a synthesis procedure

for interconnect minimization of threshold logic circuits, an im-

portant, but not well addressed, objective in both neural network

and nanometer circuit designs. Experimental results show that our

method can efficiently and effectively reduce interconnect as well as

weight/threshold value over highly optimized circuits, thus suitable

for implementation using emerging technologies.

CCS CONCEPTS
•Hardware→Combinational synthesis;Circuit optimization;

KEYWORDS
decomposition, extraction, threshold logic

ACM Reference Format:
Hao Chen, Shao-Chun Hung, and Jie-Hong R. Jiang. 2019. Disjoint-Support

Decomposition and Extraction for Interconnect-Driven Threshold Logic

Synthesis. In The 56th Annual Design Automation Conference 2019 (DAC ’19),
June 2–6, 2019, Las Vegas, NV, USA. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3316781.3317801

1 INTRODUCTION
As Moore’s law hits the physical limit, new alternative comput-

ing architectures and devices are under active research. On the

architecture side, there is non-von Neumann architecture for neuro-

morphic computing, which can achieve effective implementation

of neural networks for machine learning applications. On the de-

vice side, alternatives beyond CMOS, such as resonant tunneling

devices (RTD) [20], quantum cellular automata [3], single electron

transistors [12], memristors [9], and spintronic devices [8], have

been demonstrated. Threshold logic turns out to be a promising

circuit model under these architecture and device innovations based

on neuron-like computation. Various nanoscale devices have been

used to implement threshold logic circuits [1]. On the other hand,

recent progress in deep learning has made neural networks become

a popular model to perform tasks in artificial intelligence. Hard-

ware acceleration of neural networks is an active research area.

Neural network binarization for effective hardware realization has

been demonstrated [6]. Essentially threshold logic networks are

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00

https://doi.org/10.1145/3316781.3317801

neural networks with their activation functions being binarized.

The advancements of synthesis and verification of threshold logic

circuits may have important practical implications. These trends

revive threshold logic research in recent years.

Among prior efforts on threshold logic synthesis, prior work [19,

20] decomposes Boolean functions into a network of threshold logic

functions based on Shannon expansion. A decomposition algorithm

based on the truth table and binate splitting heuristic is proposed

in [19]. In [10], a tree matching method is applied for threshold

circuit synthesis. In [17], an implicant-implicit method is proposed.

In [16], the and-inverter graph (AIG) and cut-based technology

mapping are applied. In [11], [4], and [13], rewiring, merging and

collapse operations are proposed, respectively. Common synthesis

objectives of threshold logic circuits are minimizing gate counts,

circuit depths, and/or the magnitudes of weight/threshold values.

In this work, we address the synthesis objective from a different

aspect of minimizing the interconnect complexity of threshold logic

circuits, which is a crucial issue in machine learning applications as

neural networks are often layerwise densely connected. Recently

a synthesis method [5] is proposed to reuse partial summation in

binarized neural networks for interconnect minimization. However

its detailed implementation assumption of a binarized neuron makes

it not applicable to threshold logic synthesis.

In this paper, we lay the theoretical foundation toward disjoint-

support decomposition for threshold logic functions and extraction

of common sub-threshold logic functions for a given set of multiple

threshold logic functions. Essentially the enabling technique is the

generalized decision list, which we define as an extension to the

decision list [7, 18], for Boolean function representation. Further

we seek practical applications of the extraction operation to inter-

connect minimization of threshold logic circuits. Such minimization

may directly benefit area cost reduction for implementations with

the spintronics- and memrister-based technologies. Experimental

results demonstrate that effective interconnect reduction by 10%

(resp. 8%) on average can be achieved efficiently on threshold logic

circuits that have been highly optimized for delay (resp. area). As a

by-product, the magnitudes of weight/threshold values of threshold

logic gates can be reduced by 14% (resp. 13%) on average for delay-

minimized (resp. area-minimized) circuits. This effect also benefits

area cost reduction in RTD-based technology for threshold logic

implementation.

The remaining sections are organized as follows. Section 2 gives

the preliminaries. The decomposition and extraction operations

are detailed in Sections 3 and 4, respectively. Section 5 shows the

experimental results, and Section 6 concludes this paper.

2 PRELIMINARIES
A literal is a variable or the negation of a variable. A cube is a con-
junction of literals, and will be alternatively treated as a set of liter-

als in the sequel. Given a Boolean function f (x1, . . . ,xi , . . . ,xn),
its negative cofactor, i.e., f (x1, . . . , 0, . . . ,xn), and positive cofac-
tor, i.e., f (x1, . . . , 1, . . . ,xn), on variable xi are denoted as f |¬xi
and f |xi , respectively. The notion of cofactor on a single literal

https://doi.org/10.1145/3316781.3317801
https://doi.org/10.1145/3316781.3317801

can be extended to a cube. That is, the cofactor of f on a cube

c = l1 ∧ · · · ∧ lk is defined as iterative cofactoring f on literals

l1, . . . , lk and denoted as f |c . Given an (ordered) set X of Boolean

variables, its set of valuations/assignments is denoted as [[X]]. E.g.,
[[(x1,x2)]] = {00, 01, 10, 11}. An assignment to a set X of variables is

alternatively represented as a cube. E.g., assignment (x1 = 1,x2 = 0)
is represented as x1¬x2. The onset, denoted f 1, and offset, denoted
f 0, of a function f over variables X are the sets of assignments

that valuate f to 1 and 0, respectively. A function f is said posi-
tive unate (resp. negative unate) on variable xi if the implication

f |¬xi → f |xi (resp. f |xi → f |¬xi) holds. A function f is called

a unate function if it is either positive or negative unate on every

variable. A function f is said symmetric on variables xi and x j if
f (. . . ,xi , . . . ,x j , . . .) = f (. . . ,x j , . . . ,xi , . . .). In fact, f is symmet-
ric on variables xi and x j if and only if f |xi¬x j = f |¬xix j . As the
symmetry property is transitive, i.e., if variables x1 and x2 are sym-

metric and x2 and x3 are symmetric, then x1 and x3 are symmetric

in f . In this case, {x1,x2,x3} forms a symmetric group.
A threshold logic function (TLF) [15] f : Bn → B over input

(support) variables x1, . . . ,xn is a Boolean function that can be

specified with a vector of parameters, denoted [w1, . . . ,wn ;T], such
that

f =

1, i f

n∑
i=1

wixi ≥ T ,

0, otherwise,

(1)

where parameter wi ∈ Z represents the weight of input xi , and
T ∈ Z is the threshold value. Note that a TLF f must be a unate

function. Specifically, f is positive (resp. negative) unate on xi if
wi > 0 (resp.wi < 0). Any TLF can be converted to a function that

is positive unate on every variable by inverting its negative unate

inputs [15]. In the sequel, unless otherwise stated we assume that

the weights of a TLF have been transformed to positive values.

A threshold logic network (TLN), or called a threshold logic circuit
(TLC), is a directed acyclic graph G = (V ,E), where V is a set of

vertices and E ⊆ V ×V is a set of edges. The set V consists of three

disjoint subsets: primary inputs (PIs), primary outputs (POs), and

intermediate nodes representing threshold logic gates (TLGs), where
each TLG is referred to as a physical primitive logic unit that imple-

ments a TLF. The set e = (u,v) ∈ E signifies the interconnections

from vertex u to v . In this case, we say u is a fanin of v , denoted
u ∈ FI (v), and v is a fanout of u, denoted v ∈ FO(u). For a TLG

v with n fanins v1, . . . ,vn , it realizes some threshold function fv
specified by [wv1

, . . . ,wvn ;Tv] over variables xv1
, . . . ,xvn , where

xvi corresponds to the output variable of vi .
The implementation cost of a TLN can be measured by the total

cost of its constituent TLGs and interconnections. To implement

a TLG, several approaches including CMOS and emerging tech-

nologies have been proposed. For RTD-based implementations, the

area of a TLG is mainly affected by the magnitudes of weight and

threshold values. Hence the total area of a TLN is estimated by the

summation of weights and threshold value in each TLG; while for

spintronics-based and memrister-based implementations, the most

critical factor which determines the area of a TLG is the total number

of fanins [8, 9, 20].

3 THRESHOLD LOGIC DECOMPOSITION
3.1 Generalized Decision List
To characterize the feasibility of the threshold gate decomposition,

we extend the concept of decision list [7, 18], and define the gener-

alized decision list.

Definition 1. The generalized decision list (GDL) of a function f
over variables X = {x1, . . . ,xn } is an ordered list of three-tuple nodes

(X1,α1, β1), . . . , (Xm ,αm , βm)
where X1, . . . ,Xm are non-empty variable sets forming a partition
on X , i.e.,

⋃
i Xi = X and Xi ∩ X j = ∅ for i , j, and αi ⊆ [[Xi]]

and βi ⊆ [[Xi]] are the sets of assignments on Xi , along with any
assignment on X j not in α j ∪ βj for j = 1, . . . , i − 1, that valuate
f to 1 and 0, respectively, regardless of the assignments on variables
Xi+1 ∪ · · · ∪ Xm .

Example 1. The Boolean function f = x1 ∨ (x2 ∧ x3) can be
expressed by the GDL: (x1, {1}, ∅), ((x2,x3), {11}, {10, 01, 00}).

Algorithm 1 ConstructGDL(f)
Input: A TLF f (x1, . . . , xn) with [w1, . . . , wn ;T] for wi ≥ wi+1 > 0.

Output: A GDL L of f .
1: L := ∅, X := ∅;
2: for i = 1 to n
3: X := X ∪ {xi };
4: if no non-controlling assignment on X
5: add node (X , controlling-1(X),controlling-0(X)) into L;
6: break ;

7: else if f |a = f |b for all a, b ∈ non-controlling({x1, . . . , xi })
8: add node (X , controlling-1(X),controlling-0(X)) into L;
9: X := ∅;
10: return L;

For a GDL node (Xi ,αi , βi), an assignment in αi (resp. βi) is
referred to as a controlling-1 (resp. controlling-0) assignment, and
an assignment not in αi ∪ βi is referred to as a non-controlling
assignment.

In fact, any Boolean function can be represented as a GDL. To char-

acterized the feasibility of decomposition and extraction of threshold

logic functions, we use GDL to represent a TLF. Algorithm 1 pro-

vides a conversion procedure from a TLF to a GDL. The for-loop in

Lines 2-9 iterates over the input variables in a descending order with

respect to their weight values. In Line 3, the target input xi is added
into the temporary variable vector X . If there is no non-controlling

assignment in [[X]], the corresponding GDL node is added to the

list L in Line 5, and then L is ready to be returned in Line 10 as

all onset and offset assignments of f have already been covered.

Otherwise, if there is some assignment c in [[(x1, . . . ,xi)]] under
which the value of f remains undetermined, we check whether all

such f |c are functionally equivalent. If yes, a corresponding GDL

node is created in Line 8, and vector X is emptied in Line 9. Else,

the process continues with another iteration.

The time complexity of algorithm ConstructGDL can be analyzed

as follows. Given an n-variable TLF f , the for-loop in Lines 2-9

will be executed at most n times. For each iteration, the bottleneck

occurs at Line 7, where the checking can be reformulated implicitly

as satisfiability checking or done explicitly via enumeration through

all non-controlling assignments. Despite the expensive computation,

algorithm ConstructGDL can be efficient in practical applications.

As prior work on threshold logic synthesis mostly restricts the fanin

number of a TLG to a low level, e.g., 8 inputs in [16], the runtime

overhead for the checking can be low. Moreover, in application

benchmarks, the number of non-controlling assignments equals 1

frequently.

To ease our discussion, we define three types of GDL nodes:

Definition 2. A node (Xi ,αi , βi) in a GDL that constructed by
algorithm ConstructGDL is a type-0 node if Xi is a singleton set and

βi = {0}, a type-1 node if Xi is a singleton set and αi = {1}, and a
type-2 node if |Xi | ≥ 2.

Example 2. Consider the TLG in Figure 1(a). By Algorithm Con-

structGDL, its GDL is obtained as (x1, {1}, ∅), (x2, {1}, ∅), (x3, ∅, {0}),
(x4, ∅, {0}), ((x5,x6), {11}, {00}), (x7, {1}, {0}). It is visualized as the
list shown in Figure 1. The first two nodes are of type-1, the third and
fourth nodes are of type-0, the fifth node is of type-2, and the last node
is of either type-0 or type-1.

Given a GDL L of a TLF f with [w1, . . . ,wn ;T], it can be observed
that any suffix of L must correspond to some TLF. Such suffix TLF

can be obtained through the following derivation. Without loss

of generality, consider the derivation of the TLF д corresponding

to the (n − 1)-node suffix of L. There are three cases: For the first
node being a type-0 node with input x1, only the non-controlling

assignment, i.e., x1 = 1, matters to д. Specifically, function д = f |x1
and can be expressed by [w2, . . . ,wn ;T −w1]. Similarly, for the first

node being a type-1 node, function д = f |¬x1 and can be expressed

by [w2, . . . ,wn ;T]. On the other hand, for the first node being a

type-2 node with inputs x1, . . . ,xk , let c being the assignment in

[[(x1, . . . ,xk)]] with the minimum value of

∑
xi ∈c wi , where “xi ∈ c”

indicates literal xi is in the cube c . Then function д = f |c and can be

expressed by [wk+1, . . . ,wn ;T −∑
xi ∈c wi]. By repeating the above

process, all suffix TLFs can be obtained.

The constructed GDL enjoys the following property.

Lemma 1. Given an n-variable TLF f and its GDL L, the set of
variables in contiguous type-0 (type-1) nodes of L forms a symmetric
group of f .

With Algorithm 1, the following property can be established.

Theorem 1. Given an n-input TLF f , the GDL L constructed by
algorithm ConstructGDL is the longest. That is, there exists no other
GDL L′ of f such that |L′ | > |L|.

3.2 Disjoint-Support Decomposition
With GDL, we study the feasibility of disjoint-support decomposi-

tion of a TLF. Formally, a disjoint-support decomposition of a TLF

f over variables X = A ∪ B with A ∩ B = ∅ is to rewrite f (X) as
h(A,д(B)) forh andд being TLFs. We call variablesA and B being the

free set and bound set, respectively. To avoid trivial decomposition,

we shall assume A , ∅ and |B | ≥ 2.

The following theorem relates GDL and the decomposability of a

TLF.

Theorem 2. Given a TLF f (X) with X = A ∪ B for A , ∅ and
|B | ≥ 2, a disjoint-support decomposition f (X) = h(A,д(B)) is feasible
if there exists a GDL L such that one of the following three cases holds:

(1) The bound set variables B appear in some contiguous type-0
nodes in L.

(2) The bound set variables B appear in some contiguous type-1
nodes in L.

(3) The bound set variables B appear in the nodes of some suffix
list of L.

The theorem can be proved constructively by deriving functionsh
and д with respect to the three cases of Theorem 2. For a TLF f with

[w1, . . . ,wn ;T], assume the bound set variables B = {xk , . . . ,xl },
where 1 ≤ k < l ≤ n. In the first case,

д = [1, . . . , 1; |B |],
h = [w1, . . . ,wk−1,wд ,wl+1, . . . ,wn ;T],

forwд =
∑l
j=k w j . In the second case,

д = [1, . . . , 1; 1],
h = [w1, . . . ,wk−1,wд ,wl+1, . . . ,wn ;T],

forwд = wk . In the third case,

д = [wk , . . . ,wn ;T −
∑
xi ∈c

wi],

h = [w1, . . . ,wk−1,wд ;T],
forwд = T−

∑
xi ∈c wi , where c is the assignment in [[(x1, . . . ,xk−1)]]

with the minimum value of

∑
xi ∈c wi as discussed in suffix TLF

derivation. It can be verified that the above derivations establish

f (X) = h(A,д(B)).

Example 3. Figure 1(b), (c) and (d) show three examples of disjoint-
support decomposition for the TLF in (a) corresponding to the three
cases stated in Theorem 2, respectively.

The GDL L constructed by ConstructGDL exhibits the nice prop-

erty that if a bound set B appears in some GDL L′ as stated in

Theorem 2, then B can also be found in L. The property is formally

stated in Theorem 3.

Theorem 3. In Theorem 2, it suffices to consider only the longest
GDL constructed by algorithm ConstructGDL.

By the above theorems, we know that our GDL construction algo-

rithm can generate the longest GDL of a TLF, and that all options of

disjoint-support decomposition stated in Theorem 2 can be covered.

4 THRESHOLD LOGIC EXTRACTION
4.1 Problem Formulation
Given a TLN with multiple TLGs having the same disjoint decompo-

sition option, it is possible to extract a common decomposition TLF

for logic sharing among the TLGs. Such an extraction operation may

reduce interconnect complexity of the TLN. To compute extraction

candidates, we define extraction set and extraction pair of a TLF as
follows.

Definition 3. An extraction set is a set of nodes in a GDL whose
corresponding variable set forms a legal bound set for disjoint-support
decomposition. A set with contiguous type-0 (resp. type-1) nodes is
called a type-0 extraction set (resp. type-1 extraction set). An extrac-

tion pair (S,v) consists of an extraction set S and a corresponding TLG
v where S comes from.

Example 4. For the TLN in Figure 3(a), the set S = {(x3, ∅, {0}),
(x4, ∅, {0})} is a type-0 extraction set, and (S,v1) is an extraction pair.

Problem 1 (Threshold Logic Extraction). Given a TLN, the
threshold logic extraction problem seeks to find common decomposi-
tion TLFs for logic sharing among the TLGs such that the total number
of interconnections in the TLN is minimized while the function of the
revised TLN remains unchanged.

4.2 Extraction Flow
To achieve a high-quality solution efficiently, we propose an ex-

traction flow shown in Figure 2. In the flow, an input circuit, not

necessarily a TLN, is first synthesized into a TLN through existing

TL synthesis tools and then the weights and threshold values of

the TLGs are minimized. After the pre-processing, the core of our

extraction flow includes three main stages: 1) extraction pair initial-

ization, 2) iterative TLG extration, 3) and TLG post-processing, to

be detailed in the following.

Figure 1: (a) TLG under decomposition and its GDL; (b) decomposition with contiguous type-0 nodes; (c) decomposition with contiguous
type-1 nodes; (d) decomposition with suffix nodes.

Figure 2: Computation flow of threshold logic extraction.

4.3 Extraction Pair Initialization
Given a TLN G = (V ,E) with all its TLGs ∈ V converted in the

positive unate form, the set of extraction pairs can be collected from

the GDL, generated by algorithm ConstructGDL, of each TLG v ∈ V
by identifying the longest contiguous type-0 and type-1 nodes in

the GDL.
1
Algorithm 2 sketches the steps.

Algorithm 2 InitExtractionPairs(G)
Input: A TLN G = (V , E) with every TLG v ∈ V in positive unate form.

Output: A set P of extraction pairs.

1: P := ∅;
2: for each TLG v ∈ V
3: for each S ∈ ExtractionSets(v)
4: P := P ∪ {(S, v)};
5: return P ;

Example 5. Consider the TLN in Figure 3(a). Assume variables x1
and x2 are inverted for TLG v1 to be in positive unate form. For the
TLN, the extraction pairs ({¬x1,x3,x4,x5},v1), ({x3,x4,x5},v2) and
({x3,x4,x5},v3) can be derived.

4.4 Iterative TLG Extraction
Given a TLN G = (V ,E), its corresponding set P of extraction pairs,

and an upper bound Nlmax on logic level, we perform iterative

1
In our current implementation we do not exploit suffix nodes for extraction, i.e., case 3

of Theorem 2, as the likelihood of having equivalent suffix TLFs from different TLGs

can be low.

extraction to reduce the interconnect complexity of G while main-

taining its logic level within Nlmax . The procedure is sketched in

Algorithm 3. In Line 1, the extraction pairs P are sorted such that

TLGs with larger extraction sets will be extracted first. Because

larger extraction sets may potentially contribute to larger common

extraction subsets, the procedure ExtractVertex is more likely to

achieve greater interconnect reduction through vertex extraction.

In each iteration of the while-loop in Lines 2-11, we scan through

all extraction pairs in P and check if the extract operation can be

applied. For each extraction pair (S,v) ∈ P , if v is on a critical path,

the pair (S,v) is removed from P as an extraction on v will increase

the logic level of G by one. Otherwise, a new vertex is extracted by

ExtractVertex, and G and extraction pairs are updated.

Algorithm 3 ExtractNtk(G, P ,Nlmax)
Input: A TLN G = (V , E), extraction pairs P , and level bound Nlmax .

Output: A TLN G′ = (V ′, E′) after extraction.
1: sort the pairs (S, v) ∈ P in a descending order of |S |;
2: G′

:= G ;

3: while P , ∅
4: P ′

:= ∅;
5: for each (S, v) ∈ P
6: if v ∈ CriticalPath(G′) and level(G′) ≥ Nlmax
7: P := P \ {(S, v)};
8: else
9: (G′, PE) := ExtractVertex(G′, (S, v), P);
10: P ′

:= P ′ ∪ PE ;
11: sort the pairs (S, v) ∈ P ′

in descending order of |S |;
12: P := P ′

;

13: return G′
;

The function ExtractVertex identifies the largest common extrac-
tion subset, i.e., a subset shared by at least two extraction sets, based

on the selected extraction set to form a new TLG, and adds corre-

sponding new extraction pairs. Given a TLN G ′
, a target extraction

pair (S,v) and a set of extraction pairs P , the algorithm ExtractVertex
finds the largest common extraction subset Smax shared by at least

two extraction sets. By checking all the extraction sets in P having

the same type with S , it obtains Smax by set intersection. It then

creates a new TLG v ′
in G ′

based on Smax , and updates the TLGs

where v ′
is extracted from according to the derivation described in

Section 3.2.

Example 6. Figure 3(a) shows a TLN with three TLGs and their
respective GDLs, where the maximum common extraction subset is
identified and indicated by the dash round rectangles. In Figure 3(b), a
new threshold gate v4 is constructed by applying the ExtractVertex
operation. The fanout gates ofv4 are rebuilt, and then interconnections

Figure 3: (a) TLN under extraction and GDLs of the vertices; (b) TLN after extraction; (c) TLN simplified by post-processing.

between v4 and these gates are done. As a result, the interconnect
compelxity is reduced from 17 in Figure 3(a) to 13 in Figure 3(c).

4.5 TLG Post-Processing
In this step, we iterate through each TLG and perform the following

processing: For a one-input TLG, if the weight is no smaller than

the threshold value, it is equivalent to a buffer and can be replaced

with a wire. Otherwise, it is equivalent to a constant 0 gate and the

circuit can be simplified with constant propagation. For a multiple-

input gate, we minimize its weight/threshold values with ILP-based

minimization [14].

Example 7. Figure 3(b) and (c) show the effect of post-processing.
Because TLG v2 is equivalent to a buffer and is removed from the TLN.
Furthermore, the weight/threshold values of v1 and v3 are minimized.

5 EXPERIMENTAL RESULTS
The proposed extraction algorithm was implemented in the ABC en-

vironment [2] using the C programming language. All experiments

were conducted on a Linux workstation with an Intel Xeon 2.1GHz

CPU with 128GB memory. Test cases were selected from ISCAS,
ITC, and MCNC benchmark suits. We prepared the initial threshold

logic circuits using the state-of-the-art threshold logic synthesis

approach [16] implemented in ABC. The circuits with less than

200 threshold gates after synthesis of [16] were not included in our

experiments.

Gate count and logic level are common metrics in conventional

TLN implementation such as LUT-based design. However, gate count

is not the dominant factors of TLN area estimation in implemen-

tations based on emerging technologies. For example, the sum of

total interconnections is the dominant factor of spintronic-based

TLN area estimation rather than the total gate count. To evaluate

the solution quality of our proposed algorithm in terms of the cost

of emerging technologies as mentioned in Section 2, we defined two

cost functions for area estimation. For spintronic- and memristor-

based TLN implementation, the main factor affecting circuit area A
is the total number of interconnections. Hence we have

Cwire =
∑
v

|FI (v)|, (2)

where |FI (v)| denotes the number of fanins of threshold gate v in

the TLN. For RTD-based implementation, the dominant factor of

circuit area is the magnitude of weight and threshold values. Hence

we have

CRTD =
∑
v

|FI (v) |∑
i=1

α · (|wvi | + |Tv |), (3)

where α (setting to 1 in the experiments) is the unit area of an RTD,

wvi is the weight of the i
th
fanin of gate v , and Tv is the threshold

value of gate v .
Table 1 shows the results of our extraction algorithm applied on

circuits synthesized with [16] under delay and area optimization

options. Columns 2 and 3 show the numbers of inputs and outputs of

the circuits, respectively; Columns 4, 5, 6, and 7 (resp. 13, 14, 15, and

16) report the number of TLGs, number of logic levels, interconnect

cost, and RTD implementation cost of the TLNs synthesized by [16]

under delay (resp. area) optimization with weights and threshold

values minimized by the method in [14]; Columns 8, 9, 10, 11, and

12 (resp. 17, 18, 19, 20, and 21) list the number of TLGs, number of

logic levels, interconnect cost, and RTD implementation cost, and

CPU time of entire computation, including the GDL construction

and extraction operation, performed on TLNs synthesized by [16]

under delay (resp. area) optimization.

According to Table 1, for circuits optimized with delay minimiza-

tion our algorithm achieved an average of 10% reduction on Cwire
and 14% reduction onCRTD in the cost of 18% increase in logic level.

On the other hand, for circuits optimized with area minimization

our algorithm achieved an average of 8% reduction onCwire and 13%

reduction on CRTD in the cost of 6% increase in logic level. Notice

that there are more significant Cwire and CRTD reductions on cir-

cuits optimized for delay compared to those optimized for area. This

fact is understandable as area-driven synthesis may have exploited

potential logic sharing extensively. On the other hand, the higher

percentage of level increase in delay-optimized, compared to area-

optimized, circuits is much due to the original small level values; a

slight level increase contributes to an amplified percentage increase.

Note that although extraction may potentially increase logic level,

the reduced interconnect complexity may nullify or alleviate circuit

performance degradation. For the run time, all extraction computa-

tions were done within 16 seconds (occurred in the case b19) while
most instances were solved almost instantly. The experimental re-

sults show that the extraction computation can be effective and

efficient.

As the extraction operation reduces interconnect complexity in

the cost of increasing logic level, it sometimes may be desirable to

explore the trade-off between interconnect complexity and logic

level. To achieve such a trade-off, we may specify an upper bound

on logic level such that the gates on critical paths with their depths

reaching the boundwill be ignored in the iterative extraction scheme.

We performed a case study on circuit b15 to plot its trade-off curve

shown in Figure 4, where interconnection cost Cwire and RTD cost

CRTD are plotted as functions of the number logic levels NL. As

observed, by setting the upper bound of logic level to about 20, the

Table 1: Results of threshold logic synthesis with and without extraction.

Benchmarks Profile

Delay-Driven Area-Driven

Before Extraction [16] After Extraction Before Extraction [16] After Extraction

circuit #pi #po NG NL Cwire CRTD NG NL Cwire CRTD T (s) NG NL Cwire CRTD NG NL Cwire CRTD T (s)

c3540 50 22 465 13 2036 6883 495(1.06) 15(1.15) 1717(0.84) 5367(0.78) 0.00 473 23 1858 5902 473(1.00) 24(1.04) 1518(0.82) 4307(0.73) 0.00

c5315 178 123 732 10 2463 7574 741(1.01) 11(1.10) 2444(0.99) 7366(0.97) 0.00 738 19 2265 6283 744(1.01) 19(1.00) 2257(1.00) 6233(0.99) 0.00

c6288 32 32 1424 29 4848 13561 1478(1.04) 33(1.14) 4768(0.98) 12610(0.93) 0.01 1190 60 4027 10168 1203(1.01) 60(1.00) 4006(0.99) 9915(0.98) 0.01

c7552 207 108 950 10 3013 8255 975(1.03) 12(1.20) 2976(0.99) 7811(0.95) 0.00 938 17 2763 7520 953(1.02) 17(1.00) 2743(0.99) 7246(0.96) 0.00

s5378 35 49 578 5 2087 6056 610(1.06) 6(1.20) 2002(0.96) 5521(0.91) 0.00 584 11 1823 4762 613(1.05) 11(1.00) 1771(0.97) 4441(0.93) 0.00

s9234.1 36 39 744 7 2553 7107 774(1.04) 8(1.14) 2426(0.95) 6573(0.92) 0.00 727 16 2432 6569 761(1.05) 16(1.00) 2293(0.94) 6023(0.92) 0.00

s13207 31 121 1257 8 4708 11754 1343(1.07) 9(1.13) 3877(0.82) 9327(0.79) 0.00 1212 14 4654 12104 1326(1.9) 17(1.21) 3760(0.81) 9154(0.76) 0.00

s15850 14 87 1630 10 6097 17158 1715(1.05) 12(1.20) 5207(0.85) 13302(0.78) 0.01 1538 25 5400 15089 1630(1.06) 26(1.04) 4734(0.88) 11523(0.76) 0.00

s35932 35 320 5878 5 15506 37994 5878(1.00) 5(1.00) 15506(1.00) 37994(1.00) 0.03 5246 6 13826 35714 5246(1.00) 6(1.00) 13826(1.00) 35714(1.00) 0.02

s38417 28 106 4857 8 16143 44330 5060(1.04) 9(1.13) 14512(0.90) 37331(0.84) 0.04 4856 16 15180 38451 5013(1.03) 17(1.06) 13771(0.91) 33218(0.86) 0.04

s38584 12 278 4391 8 18167 56137 4868(1.11) 9(1.13) 16719(0.92) 46086(0.82) 0.10 4364 17 18351 57028 4873(1.12) 18(1.06) 16615(0.91) 45483(0.80) 0.09

b04 11 8 270 9 879 2387 275(1.03) 10(1.11) 836(0.95) 2202(0.92) 0.00 251 17 793 2087 256(1.02) 17(1.00) 753(0.95) 1912(0.92) 0.00

b12 5 6 490 5 2494 7193 610(1.24) 7(1.40) 1895(0.76) 4859(0.68) 0.00 443 12 2258 6838 551(1.24) 13(1.08) 1691(0.75) 4485(0.66) 0.00

b14 32 54 2680 13 9282 27810 2770(1.03) 17(1.31) 8964(0.97) 25279(0.91) 0.02 2593 44 7953 21226 2658(1.03) 49(1.11) 7720(0.97) 19531(0.92) 0.01

b15 36 70 4077 16 15870 47274 4291(1.05) 20(1.25) 13725(0.86) 37613(0.80) 0.06 4022 44 15178 41107 4206(1.06) 47(1.07) 12695(0.84) 33201(0.81) 0.04

b17 37 97 13009 22 47685 133990 13695(1.05) 25(1.14) 42072(0.88) 110554(0.83) 0.55 12803 53 45066 121455 13369(1.04) 54(1.02) 39923(0.89) 101991(0.84) 0.44

b18 37 23 36370 43 131849 367445 38271(1.05) 50(1.16) 118096(0.90) 311308(0.85) 4.55 35517 86 127349 346294 37446(1.05) 88(1.02) 113375(0.89) 291194(0.84) 3.71

b19 24 27 72362 46 262169 726624 76255(1.05) 52(1.13) 234636(0.89) 614586(0.85) 15.15 71638 93 253519 688531 75197(1.05) 94(1.01) 226551(0.89) 583424(0.85) 13.94

b20 32 22 5660 15 19657 61786 5863(1.04) 19(1.27) 18945(0.96) 54446(0.88) 0.10 5470 44 16249 41999 5524(1.01) 49(1.11) 16059(0.99) 40939(0.97) 0.06

b21 32 22 5660 16 19131 58198 5848(1.03) 21(1.31) 18505(0.97) 51722(0.89) 0.11 5515 44 16438 42230 5582(1.01) 51(1.16) 16254(0.99) 41140(0.97) 0.07

b22 32 22 8429 16 27774 81010 8581(1.02) 19(1.19) 27263(0.98) 77248(0.95) 0.22 8305 44 24640 63154 8404(1.01) 45(1.02) 24321(0.99) 61301(0.97) 0.15

des 256 245 1563 6 5817 18185 1610(1.03) 7(1.17) 5654(0.97) 17479(0.96) 0.01 1554 12 5005 15587 1565(1.01) 12(1.00) 4989(1.00) 15379(0.99) 0.01

pair 173 137 595 5 2387 7688 624(1.05) 6(1.20) 2314(0.97) 7235(0.94) 0.00 622 15 2112 5988 652(1.05) 15(1.00) 2062(0.98) 5494(0.92) 0.00

apex6 135 99 297 4 1278 4162 320(1.08) 5(1.25) 1163(0.91) 3487(0.84) 0.00 291 8 1236 3989 316(1.09) 10(1.25) 1108(0.90) 3185(0.80) 0.00

alu4 14 8 283 10 1228 4367 302(1.07) 12(1.20) 1176(0.96) 3926(0.90) 0.00 267 20 1095 3795 289(1.08) 20(1.00) 1041(0.95) 3375(0.89) 0.00

dalu 75 16 520 7 2101 7498 551(1.06) 9(1.29) 1837(0.87) 6302(0.84) 0.00 526 17 1886 6425 539(1.02) 17(1.00) 1652(0.88) 5291(0.82) 0.00

x3 135 99 288 4 1150 3472 308(1.07) 4(1.00) 1030(0.90) 3004(0.87) 0.00 290 7 1114 3608 311(1.07) 8(1.14) 1015(0.91) 3041(0.84) 0.00

i6 138 67 200 2 847 2284 200(1.00) 2(1.00) 847(1.00) 2284(1.00) 0.00 200 3 771 2152 205(1.03) 4(1.33) 658(0.85) 1828(0.85) 0.00

i7 199 67 263 2 991 3022 263(1.00) 2(1.00) 991(1.00) 3022(1.00) 0.00 235 3 871 2622 236(1.00) 3(1.00) 870(1.00) 2620(1.00) 0.00

i8 133 81 426 3 2345 8384 444(1.04) 5(1.67) 1566(0.67) 4631(0.55) 0.00 378 7 1448 4293 401(1.06) 8(1.14) 1296(0.90) 3740(0.87) 0.00

i9 88 63 274 3 1746 6369 277(1.01) 4(1.33) 1121(0.64) 4297(0.67) 0.00 226 6 897 3050 234(1.04) 8(1.33) 799(0.89) 2768(0.91) 0.00

i10 257 224 902 10 3361 9643 973(1.08) 13(1.30) 3126(0.93) 8341(0.86) 0.00 843 26 3000 8530 903(1.07) 28(1.08) 2822(0.94) 7518(0.88) 0.00

geomean 1.00 1.00 1.00 1.00 1.05 1.18 0.90 0.86 1.00 1.00 1.00 1.00 1.04 1.06 0.92 0.87

Figure 4: Trade-off between interconnect/RTD cost and logic level
for circuit b15.

best trade-off between the cost value and the circuit level can be

achieved for circuit b15.

6 CONCLUSIONS
This work has laid the foundations of disjoint-support decomposi-

tion of threshold logic functions and proposed an extraction algo-

rithm for interconnect minimization of threshold logic networks. Ex-

perimental results has demonstrated the efficiency and effectiveness

of the proposed method in reducing interconnect/RTD implementa-

tion costs and in the trade-off between interconnect complexity and

circuit depth. As interconnect costs become a dominating factor to

circuit area and delay, the extraction operation may play a key role

for threshold logic synthesis.

ACKNOWLEDGMENT
The authors thank Chia-Chih Chi, Siang-Yun Lee, and Nian-Ze Lee

for helping the experiments. This work was supported in part by

the Ministry of Science and Technology of Taiwan under grants

105-2221-E-002-196-MY3, 105-2923-E-002-016-MY3, and 106-2923-E-

002-002-MY3.

REFERENCES
[1] V. Beiu, J. M. Quintana, and M. J. Avedillo. Vlsi implementations of threshold

logic-a comprehensive survey. IEEE Tran. on Neural Networks, 14(5):1217–1243,
2003.

[2] Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential
Synthesis and Verification. https://people.eecs.berkeley.edu/~alanmi/abc/.

[3] E. P. Blair and C. S. Lent. Quantum-dot cellular automata: An architecture for

molecular computing. In Proc. of SISPAD, pages 14–18, 2003.
[4] Y.-C. Chen, R. Wang, and Y.-P. Chang. Fast synthesis of threshold logic networks

with optimization. In Proc. of ASP-DAC, pages 486–491, 2016.
[5] C.-C. Chi and J.-H. R. Jiang. Logic synthesis of binarized neural networks for

efficient circuit implementation. In Proc. of ICCAD, pages 84:1–84:7, 2018.
[6] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized

neural networks: Training deep neural networks with weights and activations

constrained to +1 or -1. In arXiv e-print:1602.02830, 2016.
[7] Y. Crama and P. L. Hammer. BooleanModels andMethods in Mathematics, Computer

Science, and Engineering. 2010.
[8] D. Fan, M. Sharad, and K. Roy. Design and synthesis of ultralow energy spin-

memristor threshold logic. IEEE Tran. on Nanotechnology, 13(3):574–583, 2014.
[9] L. Gao, F. Alibart, and D. B. Strukov. Programmable cmos/memristor threshold

logic. IEEE Tran. on Nanotechnology, 5(2):115–119, 2013.
[10] T. Gowda, S. Leshner, S. Vrudhula, and G. Konjevod. Synthesis of threshold logic

circuits using tree matching. In Proc. of ECCTD, pages 850–853, 2007.
[11] P.-Y. Kuo, C.-Y. Wang, and C.-Y. Huang. On rewiring and simplification for

canonicity in threshold logic circuits. In Proc. of ICCAD, pages 396–403, 2011.
[12] C. Lageweg, S. Cotofana, and S. Vassiliadis. A linear threshold gate implementation

in single electron technology. In Proceedings IEEE Computer Society Workshop on
VLSI 2001. Emerging Technologies for VLSI Systems, pages 93–98, 2001.

[13] N.-Z. Lee, H.-Y. Kuo, Y.-H. Lai, and J.-H. R. Jiang. Analytic approaches to the

collapse operation and equivalence verification of threshold logic circuits. In Proc.
of ICCAD, pages 1–8, 2016.

[14] S.-Y. Lee, N.-Z. Lee, and J.-H. R. Jiang. Canonicalization of threshold logic repre-

sentation and its applications. In Proc. of ICCAD, pages 85:1–85:8, 2018.
[15] S. Muroga. Threhsold logic and its applications. 1971.
[16] A. Neutzling, J. M. Matos, A. I. Reis, R. P. Ribas, and A. Mishchenko. Threshold

logic synthesis based on cut pruning. In Proc. of ICCAD, pages 494–499, 2015.
[17] A. Palaniswamy and S. Tragoudas. Improved threshold logic synthesis using

implicant-implicit algorithms. ACM Journal on Emerging Technologies in Comput-
ing Systems, 10(3):21:1–21:32, 2014.

[18] R. L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246, 1987.
[19] J. Subirats, J. Jerez, and L. Franco. A new decomposition algorithm for threshold

synthesis and generalization of boolean functions. IEEE Tran. on Circuits and
Systems I: Regular Papers, 55(10):3188–3196, 2008.

[20] R. Zhang, P. Gupta, L. Zhong, and N. K. Jha. Threshold network synthesis and

optimization and its application to nanotechnologies. IEEE Tran. on CAD, 24(1):107–
118, 2004.

https://people.eecs.berkeley.edu/~alanmi/abc/

