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ABSTRACT
Logic synthesis for combinational circuits is to find the minimum
equivalent representation for Boolean logic functions. Awell-adopted
logic synthesis paradigm represents the Boolean logic with stan-
dardized logic networks, such as and-inverter graphs (AIG), and
performs logic minimization operations over the graph iteratively.
Although the research for different logic representation and opera-
tions is fruitful, the sequence of using the operations are often deter-
mined by heuristics. We propose a Markov decision process (MDP)
formulation of the logic synthesis problem and a reinforcement
learning (RL) algorithm incorporating with graph convolutional
network to explore the solution search space. The experimental re-
sults show that the proposed method outperforms the well-known
logic synthesis heuristics with the same sequence length and action
space.

CCS CONCEPTS
• Hardware → Combinational synthesis; Circuit optimiza-
tion.
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1 INTRODUCTION
Logic synthesis is the transitional step between abstract logic and
physical implementation for very large-scale integrated (VLSI) cir-
cuits design. Figure 1 shows a typical VLSI design flow. A hardware
system is first described in hardware descriptive language, from
very abstract high-level synthesis language (HLS) to relatively con-
crete register-transfer level (RTL) language. For the hardware to be
physically implemented, the hardware system needs to be trans-
lated from functional descriptive language and mapped into logic
gate-level descriptions. Logic synthesis is the step in this transfor-
mation that happens, where the logic for the hardware needs to be
translated into physical logic devices (such as NAND, NOR, XOR,
INV).

To improved hardware performance and cost, optimizations are
taken in the logic synthesis steps to reduce the number of mapped
devices and decrease the hardware’s latency for increased speed.
Since there are multiple equivalent ways to implement the same
functionality with different logical gates, there is often an ample
space for logic synthesis to optimize. Usually, a large portion of the
optimization efforts is on the logic function level, which is usually
represented as logic graphs. A number of operations, e.g. balance,
rewrite and refactor, on the logic graph is able to find an alternative
representationwithout altering the logic function. Those operations
would be beneficial to the design scale if they can reduce the number
of nodes or depth of the logic graphs. After transferring the abstract
logic to a detailed logic graph, the graph is mapped to the actual
gates or devices in a specific technology, e.g., field-programmable
gate array (FPGA) or VLSI technology. The logic gates are then
physically placed and connected to generate a physical layout for
manufacturing VLSI chips or a bitstream for programming FPGAs.

ABC [6]1 is a well adopted framework to perform logic synthe-
sis and technology mapping in academia. As shown in Figure. 1,
the ABC is composed of logic synthesis, technology mapping, and
verification. Because of the variety of technology and the more
"black box" nature, the logic synthesis community has focused on
the logic synthesis algorithm alone. In other words, the literature
often targets to optimize the statistic of the logic graph, such as the
number of nodes and deepest logic level, instead of full power, area,
timing after technology mapping.

1https://github.com/berkeley-abc/abc
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Although the research for different logic representation and
operations is fruitful, the sequence of using the operations are often
determined by heuristic, such as resyn2 in ABC flow. Several recent
studies have proposed to explore the logic synthesis sequences
automatically. The work [3] formulates the logic synthesis flow
problem into the Markov decision process (MDP) and propose
a reinforcement learning (RL) algorithm with functional policy
approximation via Graph Neural Network (GNN) to explore the
synthesis flow. However, the algorithm’s scalability is doubtful,
and the experiments shown in the work are limited. Therefore the
effectiveness of the algorithm from [3] is not known. On the other
hand, to solve the scalability of using GNN, Yu et al. [13] propose
to use a convolution neural network (CNN) to predict whether a
synthesis flow sequence is right or not. They randomly generate the
sequences and prune them with the trained CNN classifier. There
are also work on exploring the hyperparameters for high-level
synthesis flow [11] and learning a compact circuit representation
for high dimensional boolean logic [2].

Figure 1: The flow of integrated circuit design with ABC.

This paper proposes a reinforcement learning (RL) algorithm to
explore the search space for an effective logic synthesis sequence.
We aim to push the synthesis results using the same action space
of state-of-the-art heuristic resyn2 to better results in terms of
the number of nodes and logic depth. Our main contributions are
summarized as follows:
• Wepropose to formulate the logic synthesis process asMarkov
Decision Process (MDP).

• We propose using a policy gradient algorithm to explore the
search space of logic synthesis sequences effectively.
• We propose to use a graph convolutional network to aid the
state representation in reinforcement learning.
• Experimental results demonstrate that our proposed frame-
work outperforms the state-of-the-art heuristic with the
same action space.

The source codes for this work have been released on Github2.

2 PRELIMINARIES
In this section, we introduce the preliminaries for AIG network
in Section 2.1, logic synthesis in Section 2.2 and Markov Decision
Process in Section 2.3.

2.1 Logic Networks
In hardware designs, netlists are used to represent the implemen-
tation of logic circuits. A logic network is essentially a graph ab-
straction with a combinational logic function. Each node in the
directed acyclic graph represents a primary logic gate, and the
connection represents downstream logic paths. In the case of and-
inverter graph (AIG) representations, the logic is only decomposed
into using only AND and NOT gates. Figure 2.1 gives the example
of a simple decoder logic AIG representation. AIG network can
represent any combinational logic function and is equipped with
effective logic operations for optimizations. AIG network is widely
adopted in the ABC framework.

x1 x2 x3

Output AND:

NOT:

Figure 2: Example of a AIG logic ¬(x1 ∧ x2 ∨ x2 ∧ x3)

2.2 Logic Synthesis
Logic synthesis transforms abstract hardware descriptive language
into a gate-level netlist while optimizing the VLSI implementa-
tions’ area, delay, and power. Widely-adopted logic synthesis frame-
works [6, 8] achieves this by:
• Technology independent logic representations, such as AIGs.
• Fast optimization techniques based on graph representations
for reduced logic.

2https://github.com/krzhu/abcRL
2
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• Technology specific mapping representations.
The optimization process is at the core of logic synthesis algo-
rithms, and various techniques have been proposed for reduced
logic implementations, such as logic sharing and reuse. However,
most of these optimizations need to be scalable for large graphs
and fast. Thus these algorithms rely on suboptimal graph heuristics
for fast and local optimizations. Generally, for complete logic de-
sign, these optimization techniques are applied iteratively until no
improvements could be made. The sequence of different synthesis
procedures could significantly impact the result. Commonly used
performance evaluations are the number of logic nodes and the
depth of the logic graph. A smaller number of logic nodes would
result in fewer logic gates used, and a shallow depth would improve
the logic circuit’s speed.

2.3 Markov Decision Process
Markov decision process is widely used to formulate the discrete-
time stochastic control process. In MDP formulation, the control
processes are described with states, actions, state transitions, and
rewards. Specially, an agent and the environment interacts with
each other in sequences of discrete time steps, 𝑡 = 0, 1, 2, 3, .... In
each time step 𝑡 , the environment is in state 𝑆𝑡 ∈ S and is able
to take an action 𝐴𝑡 ∈ A(𝑠𝑡 ). Furthermore, after the agent takes
action 𝐴𝑡 , the P and R describe the probability of the next state it
enters and the reward it gets as Equation 1.

𝑝 (𝑠 ′, 𝑟 |𝑠, 𝑎) = 𝑃𝑟 {𝑆𝑡+1 = 𝑠 ′, 𝑅𝑡+1 = 𝑟 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎} (1)

MDP is usually assuming Markov property so that the probability
distribution of the future states depends only upon the current state.
In other words, describing the MDP formulation process depends
purely on the present state, and the past state sequence does not
affect the environment.

3 ALGORITHM
We present our main algorithm in this section. Specially, we present
our MDP formulation in Section 3.1, the RL algorithm in Section 3.2,
graph convolutional network (GCN) in Section 3.3 and the used
neural network architecture in Section 3.4.

3.1 MDP Formulation
In this section, we formulate the logic synthesis sequence into an
MDP. As introduced previously in Section 2, logic synthesis opti-
mization is naturally a sequential process, where the sequence of op-
timization actions would result in different performance outcomes.
Furthermore, given an AIG graph, the outcome of an operation on
the graph is deterministic, which simplifies the common probabilis-
tic setting in typical MDP formulations. However, representing the
non-Euclidean graph structure of the state is challenging. To tackle
the problem’s unique properties, we formulate our MDP problem
as introduced in the rest of the section.

The work of [5] formulate synthesis as a Markov Chain Monte
Carlo optimization, where it employs the Metropolis-Hastings Al-
gorithm to determine the acceptance of different moves. However,
the Markovian property would not hold if the transformation states
are not involved since the outcome of moves would be dependant

on its history. Or in other words:

𝑃𝑟 (𝑎𝑡+1 = 𝑎′ |𝐴1 = 𝑎1, · · ·, 𝐴𝑡 = 𝑎𝑡 ) ≠ 𝑃𝑟 (𝑎𝑡+1 = 𝑎′ |𝐴𝑡 = 𝑎𝑡 ) (2)

The work of [3] refines the problem formulation as an MDP, which
involves the state as the current logic graph. It decouples the re-
liance of future moves on its history by assuming that the logic
graph states captures all the containing information:

𝑃𝑟 (𝑎𝑡+1 = 𝑎′ |𝑆1 = 𝑠1, · · ·, 𝑆𝑡 = 𝑠𝑡 ) = 𝑃𝑟 (𝑎𝑡+1 = 𝑎′ |𝑆𝑡 = 𝑠𝑡 ) (3)

We adopt a similar MDP formulation. Compared with the work
in [3] where the state is represented using the entire logic graph.
However, this limits the size of circuits at a scale of fewer than 100
nodes [3]. We extend previous works by exploring logical graph
state representations that could be scalable to typical benchmark
designs in our work.

3.1.1 State Space. In the paper, we propose to use the following
state representation.
• The current number of nodes and logic depth.
• The number of nodes and logic depth before the last action.
• The one-hot vector for the last action.
• The sum of the one-hot vectors of the last three actions.
Normalized.
• A scalar representing the current step. Normalized by 18, the
empirical expected length of sequence.
• The AIG graph.

The above states would be compacted into a single vector rep-
resentation. We integrate the graph statistics, operation history
information, as well as the AIG graph itself together. The graph
statistics and operation history information are concatenated into
a vector. On the other hand, the AIG graph is handled separately,
and we use a graph neural network to handle it, as explained in
Section 3.3. We use the one-hot vector of node type as node features.
The types are (1) constant one, (2) primary output, (3) primary input,
(4) no inverter, (5) one inverter, and (6) two inverters.

3.1.2 Action Space. We represent the action space as discrete ac-
tions, as described in Tab. 1. For fair comparisons, in our project,
we restrict the action space into the same as well-known heuristic
resyn2. Table 1 shows the operations used in resyn2. Each operation
may change the logic graph, and the result is deterministic.

Table 1: Action space A

Abbreviation Command
b Balance: Balance the current network
rw Rewrite: Performing rewriting of the AIG
rf Refactor: Performing refactoring of the AIG
rwz Rewrite with zero-cost replacements
rfz Refactor with zero-cost replacements

3.1.3 Rewards. One naive approach to define the reward is directly
using the gain in the number of nodes. However, since ABC will
automatically discard the downgrades, such formulation causes
the reward to be positive and results in a lousy convergence issue.
To avoid that, we subtract the gain by a baseline. The baseline is
gained from the heuristic resyn2. We run resyn2 twice, which is

3
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in total a sequence of 20 operations, and get the reductions in the
number of nodes or logic depth. We divide the gain by 20 to get the
average improvement of each operation. In summary, the reward
is defined in Equation 4.

𝑟1𝑡 = 𝑛𝑢𝑚_𝑛𝑜𝑑𝑒𝑠𝑡 − 𝑛𝑢𝑚_𝑛𝑜𝑑𝑒𝑠𝑡+1 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑟2𝑡 = 𝑑𝑒𝑝𝑡ℎ − 𝑑𝑒𝑝𝑡ℎ𝑡+1 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

(4)

The two settings of reward formulations are used separately in
the experiments. We normalize the number of nodes by the initial
number from the input.

3.2 Reinforcement Learning Algorithm
In this work, we use a Monte Carlo policy gradient reinforcement
learning (RL) algorithm, REINFORCE, as shown in Algorithm 1 [10].

REINFORCE algorithm is a policy gradient method. It learns the
value for actions and selects the actions based on the estimated
action values using a differentiable policy 𝜋 (𝑎 |𝑠, \ ). 𝜋 (𝑎 |𝑠, \ ) ap-
proximates the value of each action given the current state 𝑠 . Action
values are then used to construct a probability distribution of ac-
tions using softmax function. We sample an action to be taken from
this distribution. The stochastic process allows the RL agent to
explore action space.

After the current episode terminates, the REINFORCE algorithm
accumulates the rewards in a Monte Carlo manner and further
trains the policy. It accumulates the whole episode’s rewards with a
discount factor 𝛾 and inspects the RL agent’s actions (Algorithm 1
line 5). It increased the action value approximation when the ac-
tion resulted in positive rewards and vice versa. In other words,
the 𝜋 (𝑎 |𝑠, \ ) learns from experience and improves the accuracy of
action values over time. We use 𝛾 = 0.9 in the experiments.

We also adopts a state-value function approximation 𝑣 (𝑠,𝑤) as
baseline in REINFORCE algorithm [9]. The state value approxima-
tion serves as an estimation of the expected reward at each step.
When updating the policy, this estimation of state value is sub-
tracted from the actual reward (Algorithm 1 line 6). This approach
helps reduce the variance in the learning process as it provides
more consistent feedback to 𝜋 (𝑎 |𝑠, \ ).

Algorithm 1 REINFORCE algorithm with Baseline
Input: A differentiable policy parameterization 𝜋 (𝑎 |𝑠, \ ).
Input: A differentiable state-value function parameterization

𝑣 (𝑠,𝑤)
Output: Updated 𝜋 (𝑎 |𝑠, \ ), 𝑣 (𝑠,𝑤)
1: Init. policy parameter \
2: while Until convergence do
3: Generate an episode following 𝜋 (·|·, \ )
4: for each step of the episode 𝑡 = 0, 1, ...,𝑇 − 1 do
5: 𝐺 ← ∑𝑇

𝑘=𝑡+1 𝛾
𝑘−𝑡−1𝑅𝑘

6: 𝛿 ← 𝐺 − 𝑣 (𝑆𝑡 ,𝑤)
7: 𝑤 ← 𝑤 +𝐴𝑑𝑎𝑚(𝛿∇𝑤 ln 𝑣 (𝑆𝑡 ,𝑤))
8: \ ← \ +𝐴𝑑𝑎𝑚(𝛾𝑡𝛿∇\ ln𝜋 (𝐴𝑡 |𝑆𝑡 , \ ))
9: end for
10: end while

3.3 Graph Convolutional Network
Graph neural networks (GNNs) have gained increasing attention in
the design automation community because circuits can be naturally
modeled as graphs. Since AIG logic could also be converted into a
graph representation, we leverage graph convolutional networks to
extract the current state’s features. The initial node embedding for
each graph node is a concatenated vector, containing information
about the logic node type and PI/PO type. The node embeddings are
then passed through two consecutive layers of graph convolution.
Each graph convolution layer aggregates the local neighbor feature
for each node based on graph connectivity,

ℎ
(𝑘)
𝑖

= 𝜎 (
∑

𝑗 ∈𝑁 (𝑖)

1

𝑐𝑖 𝑗
ℎ
(𝑘−1)
𝑢 𝑊 (𝑘−1) + 𝑏 (𝑘−1) ) . (5)

The new node embedding would then be input for the next graph
convolution layer. The embedding for the entire graph is thus cal-
culated as the mean of all node embeddings at the final graph
convolution layer,

ℎ𝐴𝐼𝐺 =
1

|𝑉 |
∑
𝑖∈𝑉

ℎ
(𝑘)
𝑖

. (6)

3.4 Neural Network Architecture
We implement the policy and state-value function approximations
using neural networks. Figure 3 shows the network architectures.
We separate the state in the vector and the graph in Figure 3.

For the policy parameterization 𝜋 (𝑎 |𝑠, \ ), we use four layers of
graph convolutional layers to extract information from the AIG
graph and three fully-connected layers to approximate the action
values. The state-value parameterization, 𝑣 (𝑠,𝑤), on the other hand,
only uses the vector part of the state representation in this work.
The intuition is that we are motivated to use the state value to
update the policy. Therefore it might be beneficial to trade off
accuracy for lower variance.

The input vector is the state representation with a dimension
of 10. We apply two fully connected hidden layers with 32 hidden
neurons. The policy network outputs each action’s probability,
while the value network outputs a single scalar as the baseline state
value. Empirically, the graph statistics and history operations in
the vector part can provide credible information for the state value
estimation.

The networks are differentiated using the back-propagation al-
gorithm. We use Adam as the optimization function [4]. In the
experiments, the learning rate is chosen to be 8×10−4 for 𝜋 (𝑎 |𝑠, \ )
and 3×10−3 for 𝑣 (𝑠,𝑤). The exponential decay rates for themoment
estimates 𝛽1 and 𝛽2 are chosen to be 0.9 and 0.999, respectively.

4 EXPERIMENTAL RESULTS
In this section, we evaluate our proposed algorithm on various
benchmarks.

4.1 Experiment Setup
We set up the experiment in a Linux workstation. We implement
the interface to ABC using C++ and the RL algorithm in Python
with Pytorch [7] machine learning library. The experiments were
conducted on a Linux workstation with an 8-core Intel 3.0 GHz

4
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Vector

Graph
6 12 12 12

4

10 28 32 5 5

Vector
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GraphConv:

FC:

Softmax:

4

NodeMean:

Figure 3: The neural network architectures. Nonlinear acti-
vation layers are omitted.

CPU with 64 GB memory. We trained the neural network with CPU,
considering the network size is relatively small.

4.2 Evaluation of the RL Agent Effectiveness
We first evaluate the effectiveness of the RL agent. We perform 100
runs of our RL agent on the benchmark i10 from [6]. For each run,
we re-initialize every parameter and run 200 episodes. Each episode
is of length 20.

We compare the results with two runs of resyn2. The action space
and the length of the sequence are identical for the RL agent and
the baseline.

Fig. 4 shows the mean and standard deviation of the improve-
ment over the baseline. The black line represents the reduction of
the number of nodes of two runs of resyn2. The blue line repre-
sents the average improvement in each step in 75 experiments. The
shadowed region denotes the standard deviation of the reduction
in the experiments. The y-axis is the ratio of further improvement
over the baseline; the higher, the better. After roughly 50 itera-
tions, the average performance of the RL agent has exceeded the
state-of-the-art resyn2.

Fig. 5 shows the best and worst results of each step in the exper-
iments. The worst results are closer to the mean in the later steps.
This observation demonstrates that our RL agent is getting more
and more robust in a short period.

4.3 Evaluation of the Performance
To evaluate our RL algorithm’s performance, we arbitrary choose
eight relatively large combinational circuit benchmarks from [1, 6,
12]. For each benchmark, we perform ten complete runs of our RL
algorithm. There are 200 episodes in each run. Each episode is of
20 logic synthesis operations. At the end of each run, we inferences
ten sequences and pick the best of them. We average the results
collected in the runs. We present the RL algorithm results in two
rewards settings: 𝑟1𝑡 and 𝑟2𝑡 as defined in Section 3.1.3. 𝑟1𝑡 is focusing
on optimizing the number of nodes in AIG graph, while 𝑟2𝑡 is on
optimizing the logic depth. The results for the two settings are

Figure 4: The improvement over two runs of resyn2. Shadow
denotes the standard deviation.

Figure 5: The improvement over two runs of resyn2. Shadow
denotes the minimum and maximum in the experiments.

denoted as RL-1 and RL-2, respectively. We compare the average
performance of the RL algorithm with three baselines:
• One execution of resyn2. Denotes as resyn2-1.
• Two executions of resyn2. The sequence length of this base-
line is the same as our RL setting. Denotes as resyn2-2.
• The converged results of iteratively executing resyn2. We re-
peatedly execute resyn2 until the results becomes unchanged
for at least 5 execution. Denotes as resyn2-∞.

Tab. 2 shows the results on ten different benchmarks. In general,
our proposed algorithm not only beat the performance of resyn2-2,
but also on average outperform the resyn2-∞. Considering the
resyn2-∞ in general has a much longer sequence length, the ex-
perimental results suggest the RL agent can find a more useful
sequence then fixed heuristics. We believe the RL agent can explore

5
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Table 2: Performance results: Number of nodes and logic depth in different optimization settings.

Benchmark Initial resyn2-1 resyn2-2 resyn2-𝑛 RL-1 RL-2
#Nodes Depth #Nodes Depth #Nodes Depth #Nodes Depth #resyn2 #Nodes Depth #Nodes Depth

i10 2675 50 1829 32 1804 32 1789 32 6 1730.2 40.3 1839.4 31.9
c1355 504 25 390 16 390 16 390 16 1 386.2 17.6 390.0 16.0
c7552 2093 29 1469 26 1416 26 1398 26 7 1395.4 27.4 1460.8 22.1
c6288 2337 120 1870 89 1870 89 1870 89 1 1870.0 88.0 1882.0 88.0
c5315 1780 37 1306 28 1295 26 1294 26 3 1337.4 27.2 1364.7 25.4
dalu 1371 35 1106 31 1103 31 1103 31 2 1039.8 33.2 1095.6 30.0
k2 1998 23 1234 13 1186 13 1145 13 11 1128.4 19.8 1187.5 13.0

mainpla 5346 38 3678 26 3583 26 3504 25 7 3438.4 25.0 3504.0 25.5
apex1 2665 27 1999 17 1966 17 1941 17 7 1921.6 19.2 2004.7 17.0
bc0 1592 31 933 17 899 17 875 17 8 819.4 18.6 851.7 17.5
Ratio 1.000 1.000 0.730 0.706 0.717 0.702 0.707 0.699 - 0.698 0.757 0.720 0.687

a more extensive search space and escape from the local minima
trapping the resyn2. On the other hand, the flexible reward set-
tings also allow the RL agent to optimize for different objectives, as
shown in the experimental results.

5 CONCLUSION
We present the RL for logic synthesis operation sequence explo-
ration. We propose a MDP formulation of the logic synthesis prob-
lem. Our experimental results show our RL agent can outperform
the state-of-the-art resyn2 heuristic using the same action space.

ACKNOWLEDGEMENT
The authors would like to thank Cunxi Yu from University of Utah
for helpful discussions.

REFERENCES
[1] F. Brglez, D. Bryan, and K. Kozminski. Combinational profiles of sequential

benchmark circuits. In ISCAS, May 1989.

[2] P.-W. Chen, Y.-C. Huang, C.-L. Lee, and J.-H. R. Jiang. Circuit learning for logic
regression on high dimensional boolean space. 2020.

[3] W. Haaswijk, E. Collins, B. Seguin, M. Soeken, F. Kaplan, S. Süsstrunk, and G. De
Micheli. Deep learning for logic optimization algorithms. In ISCAS, 2018.

[4] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations (ICLR), 2015.

[5] G. Liu and Z. Zhang. A parallelized iterative improvement approach to area
optimization for lut-based technology mapping. In FPGA, 2017.

[6] A. Mishchenko. Abc: A system for sequential synthesis and verification.
[7] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-

son, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. In Conference
on Neural Information Processing Systems (NIPS), 2017.

[8] H. Riener, E. Testa, W. Haaswijk, A. Mishchenko, L. Amarù, G. D. Micheli, and
M. Soeken. Scalable generic logic synthesis: One approach to rule them all. In
DAC, 2019.

[9] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 2st edition, 2018.

[10] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Conference on Neural
Information Processing Systems (NIPS), 1999.

[11] Z. Wang and B. C. Schafer. Machine leaming to set meta-heuristic specific
parameters for high-level synthesis design space exploration. In DAC, 2020.

[12] S. Yang. Logic synthesis and optimization benchmarks, 1989.
[13] C. Yu, H. Xiao, and G. De Micheli. Developing synthesis flows without human

knowledge. In DAC, 2018.

6

Session 5: ML for Systems  MLCAD '20, November 16–20, 2020, Virtual Event, Iceland

150


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Logic Networks
	2.2 Logic Synthesis
	2.3 Markov Decision Process

	3 Algorithm
	3.1 MDP Formulation
	3.2 Reinforcement Learning Algorithm
	3.3 Graph Convolutional Network
	3.4 Neural Network Architecture

	4 Experimental Results
	4.1 Experiment Setup
	4.2 Evaluation of the RL Agent Effectiveness
	4.3 Evaluation of the Performance

	5 Conclusion
	References


 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: all pages
     Mask co-ordinates: Horizontal, vertical offset 300.66, 60.30 Width 17.74 Height 17.74 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         2
         AllDoc
         20
              

       CurrentAVDoc
          

     300.6605 60.3042 17.7381 17.7381 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     5
     6
     5
     6
      

   1
  

 HistoryList_V1
 qi2base





